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 -- Articles are listed/discussed in approximate chronological and logical order. 
 
 -- Links are sometimes provided to information on Kroonenberg’s Three-Mode website 
or my University website. In the pdf version of this file, most of the links to 
Kroonenberg’s site do not work, but many to my site do. However, the Kroonenberg site 
is the richest source of information; if you are interested in those links, use the .doc 
version of this file instead of the .pdf, or go directly to  http://three-mode.leidenuniv.nl/ . 
 
 
1. Harshman, R. A., & Lundy, M. E. (1984b). 
Data preprocessing and the extended PARAFAC model. In H. G. Law, C. W. Snyder Jr, 
J. A. Hattie, & R. P. McDonald (Eds.), Research methods for multimode data analysis 
(pp. 216-284). New York: Praeger. Abstract ,  Full text   
 
The first published discussion of degenerate Parafac solutions is contained in a section of 
this chapter, where the phenomenon is described and named and its cause is investigated 
and qualitatively identified. A distinction is first made between “soft” degeneracies, 
which can be eliminated by preprocessing, and “hard-core” degeneracies, which cannot. 
However, the “hard-core” degeneracies can be prevented by applying either a zero-
correlation or orthogonality constraint to any one mode; this lowers fit by a few 
percentage points, but experience with both real and simulated data indicate that the 
constrained nondegenerate solution approximately recovers the true factors. Some 
experiments are described that test theories about the causes of degeneracy, and these 
lead to the conclusion that it is “Tucker variation”—systematic data variation that cannot 
be represented by a Parafac model at the dimensionality being fit, but that can be 
represented at that dimensionality by a Tucker T3 or T2 model (pp. 278-279). Two key 
findings essentially prove this connection: (a) when real (i.e., empirical) datasets that 
produce degenerate Parafac solutions at a particular dimensionality are “filtered” of all 
but T3-T2 variation (by orthogonal projection onto a T2 subspace), they still produce the 
same degenerate solutions; (b) when artificial (i.e., computer generated) datasets that are 
constructed to include substantial “Tucker variation” are analyzed by Parafac, they 
produce a degenerate solution, as predicted, whereas other artificial datasets constructed 
without “Tucker variation” do not, also as predicted. Although these experiments are 
reported in abbreviated form, their qualitative findings (about when degeneracy does and 
does not occur) are easily to verify and are sufficient, in themselves, to establish the 
authors’ conclusion that “Tucker variation” causes degeneracy. However, they shed little 
light on the mathematical mechanism by which this occurs.  
 
2. Harshman, R. A., & DeSarbo, W. S. (1984). 
An application of PARAFAC to a small sample problem, demonstrating preprocessing, 
orthogonality constraints, and split-half diagnostic techniques. In H. G. Law, C. W. 
Snyder Jr, J. A. Hattie, & R. P. McDonald (Eds.), Research methods for ultimode data 
analysis (pp. 602-642). New York: Praeger. Abstract,  Full text  
 

http://three-mode.leidenuniv.nl/
http://publish.uwo.ca/~harshman/lawch6.pdf
http://publish.uwo.ca/~harshman/lawappc.pdf
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This article appears as an appendix to (the volume that contains) [1]. Its importance here 
is that it supplements the discussion of degeneracy in [1] by presenting actual degenerate 
solutions encountered during analysis of a particular dataset and illustrating how 
preprocessing and zero-correlation constraints overcome them. Its broader role is to serve 
as a step-by-step demonstration and discussion of various aspects of a Parafac analysis.   
3. Lundy, M. E., Harshman, R. A., & Kruskal, J. B. (1989). 
A two-stage procedure incorporating good features of both trilinear and quadrilinear 
models. In R. Coppi & S. Bolasco (Eds.), Multiway data analysis (pp. 123-130). 
Amsterdam: Elsevier. Abstract  Full Text
 
The discovery in [1] that “Tucker variation” is the cause of degenerate Parafac solutions 
affords the possibility of  “decoding” the phenomenon--identifying and then interpreting 
the specific data patterns responsible for making a particular analysis become degenerate. 
Article [3] shows how this can be done using a two-stage analysis procedure the authors 
call PFCORE. Stage 1 employs the standard response to hard-core degeneracy--a factor-
independence constraint that blocks it and allows an interpretable Parafac solution to 
emerge. Stage 2 uses the loadings from Stage 1 to estimate a T3-type core array that 
shows the Tucker-type interactions of the Parafac factors. Large elements in this array 
reveal how particular inter-factor angles have varied and covaried across modes as well 
as the direction and relative size of these variations, all of which may provide useful 
scientific insights. The advantage of PFCORE over a direct T3 analysis is its potential for 
a unique factor “rotation”. The method is demonstrated by applying it to ratings of 15 
television shows (rated 1 to 7) on 16 evaluative or descriptive scales by each of 40 raters. 
The unconstrained 2D Parafac solution is nondegenerate; its dimensions are Program 
Humor and Program Sensitivity.  However, the unconstrained 3D solution is degenerate, 
prompting a Parafac reanalysis in which the “TV Program” mode is constrained to have 
uncorrelated/orthogonal loadings. The Humor and Sensitivity dimensions are again 
recovered, plus a third dimension, interpreted as Program Violence. This solution is used 
to obtain a 3x3x3 core array of factor “interactions” which shows that the problematic 
(non-Parafac) variation is mainly due to differences across individuals in angle between 
their humor and violence dimensions; for some raters, these are positively related, for 
others, just the opposite. The article also discusses more general models, and 
demonstrates a Monte Carlo method of assessing the significance of improvements in fit. 
In the example application of this method (a dataset of metaphor ratings), strong T1 
structure is indicated.  
 
 
4.  Kruskal, J.B. (1989). 
Rank, decomposition, and uniqueness for 3-way and N-way arrays. In R. Coppi & S. 
Bolasco (Eds.), Multiway data analysis (pp. 7-18). Amsterdam: Elsevier. (see also  
 and 
5.  Kruskal, J. B., Harshman, R. A., & Lundy, M. E. (1989). 
How 3-MFA data can cause degenerate PARAFAC solutions, among other relationships. 
In R. Coppi & S. Bolasco (Eds.), Multiway data analysis (pp. 115-122). Amsterdam: 
Elsevier. Abstract    
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These two articles together provide a basic mathematical framework for understanding 
Parafac degeneracy that is used in almost all subsequent work on the topi.  Article [4] is 
more general in that it explains essential ideas about rank and decomposition of arraysi, 
while [5] uses these ideas to explain degeneracyii. It begins with a description of seven 
observed properties of actual degenerate solutions, stated as they apply in the simplest 
case, which is called a “two-factor degeneracy”. (When more factors are involved, most 
properties are the same but correlations and cancellations are more complicated.) For this 
simple case,  (i)  two factors are involved, (ii) their loadings are highly correlated in all 
three modes,  (iii) one or all three correlations are negative, (iv) the factors have large 
loadings but (v) a “normal sized” net contribution because their combined contributions 
almost cancel out (due to the negative correlations), (vi) their loadings keep growing in 
size and degree of correlation as further iterations are performed, and thus (vii) they 
eventually become larger than any other factors.   
 
Article [5] then mathematically defines and geometrically describes a process with quite 
similar properties to those in the above list, and states a theorem about it that reveals 
important consequences of trying to fit a rank-3 2x2x2 array using a rank-2 Parafac 
model. The description constitutes a novel and important method of representing and 
visualizing the degeneracy phenomenon in a geometric framework, one that is built 
around Kruskal’s surprising discovery about multiple “typical ranks” of three-way arrays 
(first reported in [4]; see, e.g., [10] for more recent discussion).  
 
Key features of the framework are: (a) Use of the space of possible data arrays (in this 
case, an 8-dimensional space or 8-space, defined by the possible values in a 2x2x2 array) 
rather than the 12-dimensional space of parameter arrays (defined by the 12 loadings). 
(b) Critical use of Kruskal¹s discovery that the 8-space is divided into two regions of 
positive volume, one of rank-2 (where the Parafac approximations are located) and one of 
rank-3 (where the array being fit is located) [for a more precise statement see the end of 
this bibliography].  (c) Description of the Parafac fitting process as (i)  a sequence of 
points in 8-space, each an approximation, that can be thought of as forming a path 
through the rank-2 region toward the array being fitted,  but (ii) the path cannot reach the 
actual data array because it is in the rank-3 region, while the approximations, which are 
generated by a two-factor model, necessarily have rank-2;  so (iii)  the path converges 
toward that point on the boundary closest to the data point in 8-space iii.  (d) Direct 
linkage of the degeneracy to the fact that the approximation is approaching a point (on 
the boundary) which it can never reach.  
 
This framework is supported and clarified by Theorem 1 in [5], which states that in the 
situation described above: (a) the sum of squared residual errors has an infimum, but no 
minimum; (b) the loadings for the factors diverge; and (c) their loadings approach 
proportionality (and do so in such a way that they almost “cancel” and hence the fitted 
array converges). A corollary of the theorem extends it to it higher rank arrays: for any 
integer R there exist rank-R arrays for which the lower-rank Parafac approximationiv has 
an infimum rather than a minimum value. In a two-factor approximation, the loadings  
behave as described in Theorem 1, while in a higher-rank approximation, at least the 
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largest two factors behave in this way. The article also discusses other relationships 
between models, but these are less related to degeneracy. 
 
 Apparent and real limitations. Some of the seeming limitations of generality in this 
method of representing degeneracies, and in the associated theorems, are more apparent 
than real. As the authors point out, the results apply not only to arrays meeting the stated 
conditions, but also to larger arrays that have cores meeting the specified conditions 
(when exactly decomposed via T3). And it also seems likely that more complicated 
degeneracies will have a related explanation, since they are observed to have the same 
empirical properties. Three-factor degeneracies, for example, might be explained “…in 
connection with 3x3x3 cores of rank 4 or 5” ([5] p. 120). The most serious limitation of 
this article is that its authors do not give proofs of the theorems that are stated.  
Fortunately, as indicated below, subsequent authors have been able to provide proofs for 
some of the most critical propositions and even add to them.  
 
6. Ten Berge, J.M.F., Kiers, H.A.L., & De Leeuw, J. (1988). 
Explicit candecomp/parafac solutions for a contrived 2x2x2 array of rank three. 
Psychometrika, 53, 579-584. 
     This article makes an important contribution toward evaluating and proving the 
Theorems that were stated in [5] without proof. First, it proves part “(a)” of Theorem 1 
which states that, in the conditions specified, the Parafac sum of squared residuals 
approaches an infimum rather than minimum, and hence the fitting process does not 
converge. This is arguably the most critical (and surprising) part of the theorem. With this 
statement proved, the divergence and increasing proportionality of loadings (statements 
“(b)” and “(c)” of Theorem 1) seem plausible as additional characteristics of degenerate 
solutions that also move toward a discontinuity at the boundary between the rank-2 and 
rank-3 regions of the 8 dimensional space.  Second, it takes “(a)” further than [5] by 
showing that the value of the infimum = 1 if the data array contains the values given in 
the rank-3 example on p. 9 of [4] (mistakenly called the KHL array).  Finally, it points 
out that the common belief that “symmetric data implies a symmetric solution” does not 
necessarily hold when the solution is degenerate. 
 
 
7. Mitchell, B.C., & Burdick, D.S. (1994). 
Slowly converging Parafac sequences: Swamps and two-factor degeneracies. Journal of 
Chemometrics, 8, 155-168.  
A new and unexpected aspect of degenerate behavior is revealed in this article. The 
continuously improving array approximations may temporarily display Theorem 1 
properties (b) and (c)  (see [5]) –diverging size and increasingly higher proportionality– 
and along with this the fit may improve in smaller and smaller increments, suggesting 
property (a), but then, after many iterations, the approximations lose these characteristics 
and make more rapid progress toward a nondegenerate converged solution. The authors 
refer to this as Parafac passing through a “swamp”, and report that it was observed in 
roughly 1/3 to 1/4 of sixty-four simulated 4D chemical datasets that they studied. Though 
unexpected, the article points out that such behavior is not inconsistent with Theorem 1 in 
[5]: “perhaps, as the PARAFAC sequence progresses toward [its] target, it comes close to 
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a region of higher rank …” (p.165) slowing it down in just the way Theorem 1 would 
describe. If the data array is not in the higher rank region, the sequence could gradually 
work its way around the ‘swamp; and resume fast progress toward its target.  The authors 
acknowledge that this is “purely conjecture”, but they are subsequently shown correct by  
mathematical work in [10].  They also point out that the concern of some users that 
Parafac encounters local optima may be based on misinterpretation of swamps.  By 
“waiting out” swamps these authors encountered no local optima in their synthetic 
datasets. [Note: When uniqueness holds, local optima can arise legitimately in various 
ways, such as when subsets of R factors are extracted from a space that has a higher true 
dimensionality]  
 
 
8. Rayens, W.S., & Mitchell, B.C. (1997). 
Two-factor degeneracies and a stabilization of Parafac. Chemometrics and Intelligent 
Laboratory Systems, 38, 173-181. Abstract    
The discovery (in [7]) that periods of temporary degenerate behavior can arise and then 
go away as an analysis passes through a ‘swamp’ stimulated the authors of this article to 
develop a modified analysis method that tries to take a path around the periphery of these 
‘swamps’, thereby greatly reducing the iterations required to reach the solution. They 
accomplish this by replacing the standard OLS multiple regression in the Alternating 
Least Squares algorithm with ridge regression, a well known technique used in statistics 
to ‘regularize’ (improve stability of) predictor weights in multiple regression when some 
of the predictors are highly collinear.  In effect, the method penalizes the goodness-of-fit 
when there are large (positive or negative) regression weights. Since large loadings and 
highly collinear factors characterize both degenerate solutions and ‘swamps’, this 
regularization is well suited to “change the error gradient” near swamps so that the 
sequence of improved solutions avoids ‘swampy’ regions of the space (but see [10] re 
‘shadows’ cast by swamps). The authors point out that ridge regression somewhat biases 
the resulting parameter estimates, and discuss ways to select the optimum size of the 
ridge weights. Applying their methods, they demonstrate that the number of iterations 
needed to achieve a converged solution in the presence of swamps is substantially 
reduced, often by a factor of 10 or even more.  
 
[[Note: Since the authors’ simulation was constructed to study swamps, all their analyses 
were at the correct dimensionality (i.e., used the same number of factors that was used to 
generate the data, in this case, 4). However, when the solution has lower rank than the 
systematic variation in the data (before error), which is a key condition assumed in 
Theorem 1, there are particular circumstances where unavoidable degenerate solutions 
will occur. One such circumstance might be when the data rank is higher than the size of 
any mode of the data array (as the remark on p.120 in [5] suggests). In cases of true 
degeneracy rather than a swamp, one must impose a constraint such as a factor 
independence or positivity to overcome the degeneracy. The constraint forces the analysis 
to find the position in the lower-rank array space that is as close to the target in the 
higher-rank region as is feasible without having partially canceling factors; thus it stops 
short of that region near the boundary where severe distortions and swamp behavior 
emerge.]] 
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9. Kiers H.A.L., Ten Berge, J.M.F., & Rocci, R. (1997). 
Uniqueness of three-mode factor analysis models with sparse cores: The 3×3×3 case. 
Psychometrika, 62, 349-374.  
Three aspects of this article are most relevant to degeneracy (it also makes other 
important contributions not noted here): (a) it provides a constrained T3 model that,  in 
effect, extends Parafac to include “Tucker-variation” directly into the model and hence 
represent it in the basic (Stage 1) analysis,  without losing uniqueness (a formal proof of 
this is given); (b)  alternatively, the model can be used as Stage 3 of an “Extended 
PFCORE” analysis, in which the Stage 2 core array is itself modeled, and then abstracted 
into a few key parameters that represent particular three-way interactions of factors; (c) 
the article provides, as a demonstration, an extension of the PFCORE analysis of TV 
ratings data carried out in [3], thus adding to our information about that specific instance 
of Tucker-variation causing degeneracy; and, finally, (d) the full (9-parameter) version of 
their Extended Parafac model can represent all the T3 variation among the extracted 
dimensions, and this makes an empirical result reported in [11] particularly significant, 
possibly requiring a refinement of the “Tucker-variation” theory of degeneracy.  
 
 
 
10. Paatero, P. (2000). 
Construction and analysis of degenerate PARAFAC models. Journal of Chemometrics, 
14, 285-299. 
This article makes several major contributions to the study of degenerate Parafac  
solutions. (a) It provides (i) exact descriptions –  one-parameter families of mathematical 
models – showing how factor loadings could change as a solution goes through the 
process of degenerate collapsev; two main families are described, both consistent with 
[5];  (ii) these models also imply the form of the approximating array at each point in the 
process;  (iii) the limit points for the sequences of rank-2 approximating arrays are what  
Paatero calls “degenerate arrays” --  rank-3 arrays that can be approximated to arbitrary 
precision by a rank-2 array; arrays of this form would be found in boundary of the rank-3 
region and the degenerate process would approach the one that is least distant from the 
target (in the 8-space); (iv) the two main model families take different paths toward the 
boundary in the 8-dimensional array space yet approach the same rank-3 limit array. (b) 
It provides the first detailed description and algebraic models of “higher order” 
degeneracies, ones involving more than two factors (for example, it provides a model of a 
three factor solution in which all three factors diverge toward infinity yet the estimated 
array converges). (c)  It answers one of the basic questions posed by Kruskal a decade 
earlier: what is the shape of the boundary between the rank-2 and rak-3 regions in the 8 
dimensional array space. It  turns out to be parabolic if the space is sliced in certain 
directions, hyperbolic in others, with its “top” corresponding to a saddle-point on the 7-
dimensional hypersurface. (e)  It confirms the conjecture made in [7] that ‘swamps’ are 
temporary occurrences of the phenomenon described in [5], and shows how to construct 
analysis problems that will exhibit predictable swamp behaviorvi; (e) It demonstrates a 
graphical method of displaying the path through array space generated by the sequence of 
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gradually improved Parafac approximations and its relation to the rank-2 boundary, 
which appears as a parabola below which lies the region of higher-rank. (f) It uses these 
array-space plots to present some typical results of numerical experiments demonstrating  
(i) constructed ‘swamp’ behaviorvii, (ii) a fully degenerate suboptimal solution where the 
sequence becomes “trapped” and is unable to surmount the parabolic obstacle, instead 
falling “forever” into a swamp--even though there is a valid solution further off in the 
rank-2 region. (iii) differences in the behavior of Parafac algorithms, specifically standard 
ALS, Paatero’s PMF ([13]), Ryan and Mitchell’s regularization ([8]), and Bro’s line 
search ([14]), in the presence of swamps and on approach to the true optimum.    
   
 
11. Zijlstra, B. J. H., & Kiers, H. A. L. (2002). 
Degenerate solutions obtained from several variants of factor analysis. Journal of 
Chemometrics, 16, 596-605. 
This article significantly enlarges our perspective on degenerate solutions (of the kind 
considered by this bibliography) by investigating how widely they are found and looking 
for universals that describe and govern their behavior. The authors first review the 
literature to construct a definition—ending up with loading profiles that become 
increasingly proportionalviii  but negatively related, while also growing (diverging) in size 
until they become excessively large (in the subset of loadings not size-standardized).  
They then conduct a series of simulation studies, looking for this loading behavior in 
several  “variants of factor analysis”, all of which have at least some elements that are 
uniquely determined up to scaling and permutations.  These consisted of the “shifted 
multiplicative model” (SHMM) and a component model for multi-trait multi-method 
matrices (MTMM),(both two-way models) and Constrained Tucker3 , Parafac, and 
Parafac-2 (which are three-way models).  After multiple attempts with each, they can  
identify two or more degenerate solutions with all models (though indirect-fit Parafac2 
only as local optima).   They conclude that degenerate solutions are characteristic, not 
just of Parafac, but more broadly of many (possibly all) factor-type models that have 
unique solutions! Furthermore, “degenerate solutions obtained with these models all 
share the same features”.   In contrast, they also show logically why models without 
unique solutions can not show degenerates solutions. “Rotational uniqueness” is a 
prerequisite for unique solutions, but the precise structure of the unique aspects of the 
model can vary considerably.   
 
[[There is a particularly puzzling and potentially significant aspect of this paper in 
relation to the theory of degeneracy presented in my talk at this Tensor Decomposition 
Workshop. In [11] they find that the full 9 parameter form of the constrained Tucker3 
(which is called C3TMFA-EP in [9]) can exhibit degenerate solutions. If all Tucker 
variation among the extracted dimensions is fit by the 9-parameter model, then why 
would it ever show degenerate solutions? However, it turns out that the 9-parameter 
model may not always be adequate to obtain the same fit as a full Tucker T3 model!]]  
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Other secondarily related items (e.g., cited in [1-11]), some with short comments: 
 
12. Ten Berge, J.M.F. (1991). 
Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays. 
Psychometrika, 56, 631-636. 
This article enriches our understanding of array rank in several ways. First, it clearly 
explains a polynomial that Kruskal devised for determining the rank of a 2x2x2 array and 
then extends it to 2xnxn arraysix.  The methods used for discussing, analyzing and 
proving these things are educational and informative in themselves. There are also likely 
to be future applications of the author’s technique for evaluating the rank of a 2xnxn 
array. 
 
13. Paatero, P. (1997). 
A weighted non-negative least squares algorithm for three-way "PARAFAC" factor 
analysis. Chemometrics and Intelligent Laboratory Systems, 38, 223-242. 
Published Abstract: A time-efficient algorithm PMF3 is presented for solving the three-way PARAFAC 
(CANDECOMP) factor analytic model. In contrast to the usual alternating least squares, the PMF3 
algorithm computes changes to all three modes simultaneously. This typically leads to convergence in 40 .. 
100 iteration steps. The equations of the weighted multilinear least squares fit are given. The optional non-
negativity is achieved by imposing a logarithmic penalty function. The algorithm contains a possibility for 
dynamical reweighting of the data during the iteration, allowing a robust analysis of outlier-containing data. 
The problems typical of PARAFAC models are discussed (but not solved): multiple local solutions, 
degenerate solutions, non-identifiable solutions. The question of how to verify the solution is discussed at 
length.  
 
 

14. C. A. Andersson and R. Bro 
The N-way Toolbox for MATLAB. Chemometrics & Intelligent Laboratory Systems. 52 
(1):1-4, 2000. 
Published abstract: This communication describes a free toolbox for MATLABw for analysis of multiway 
data. The toolbox is called ‘‘The N-way Toolbox for MATLAB’’ and is available on the internet at  
http://www.models.kvl.dk/source/nwaytoolbox/ . This communication is by no means an attempt 
to summarize or review the extensive work done in multiway data analysis but is intended solely for 
informing the reader of the existence, functionality, and applicability of the N-way Toolbox for MATLAB. 
http://www.models.kvl.dk/source/nwaytoolbox/ You can download a PDF-file of the 
paper here. 

 
15 . Kruskal, J. B. (1977). 
Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to 
arithmetic complexity and statistics (Corrections, 17-1-1984; fulltext PDF with 
corrections). Linear Algebra and Its Applications, 18, 95-138. Abstract [(Corrections 
also available from The Three-Mode Company)  

http://www.models.kvl.dk/source/nwaytoolbox/
http://www.models.kvl.dk/source/nwaytoolbox/
http://www.models.kvl.dk/source/nwaytoolbox/TheNwayToolboxforMATLAB.pdf
http://www.models.kvl.dk/source/nwaytoolbox/TheNwayToolboxforMATLAB.pdf
http://three-mode.leidenuniv.nl/pdf/k/kruskal1977_1984.pdf
http://three-mode.leidenuniv.nl/pdf/k/kruskal1977_1984.pdf
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 Some other Kruskal-related links on Kroononberg’s Three-Mode website: 
 
Kruskal, J. B. (1981). 
Multilinear models for data analysis. Behaviormetrika, 10, 1-20. Abstract  
Kruskal, J. B. (1983a). 
Multilinear methods. Proceedings of Symposia in Applied Mathematics, 28, 75-104. 
Abstract 
Kruskal, J. B. (1983b). 
Statement of some current results about three-way arrays. Informal notes, Place 
unknown, Month unknown Abstract  |  fulltext PDF  
Kruskal, J. B. (1984). 
Multilinear methods. In H. G. Law, C. W. Snyder Jr, J. A. Hattie, & R. P. McDonald 
(Eds.), Research methods for multimode data analysis (pp. 36-62). New York: Praeger. 
Abstract (not yet available)  
Kruskal, J. B. (1985). 
Rank of N-way arrays and the geometry of 2×2×2 arrays. Technical Memorandum, 
AT&T Bell Laboratories, Murray Hill NJ. Abstract |  fulltext PDF  
 
Links to other related material on three-way (and n-way) array decompositions can be 
found at: 
 
 http://three-mode.leidenuniv.nl/
 
endnote: A precise statement of the dual-rank property that Kruskal discovered is as follows: “In 
the 8-dimensional Euclidean space of all 2x2x2 arrays, there are two 
different ranks, r=2 and r=3, such the set of all arrays of rank r has 
Lebesgue measure greater than 0” 
 
                                                 
i Article [4] is listed here because it is a companion to [5]. Kruskal’s work on array rank and uniqueness 
appears in several places; some is written for mathematicians and some (as here) for scientists and data 
analysts; see the supplementary publication list and bibliographic link further down.    
ii Some of the articles in this bibliography, including [6], [11], and to a lesser degree [12], exclusively or 
primarily cite unpublished sources (specifically, 1983 and 1985 conference talks by the same authors) as 
the origin of the ideas and results in [5]. However, after consulting with all the authors, it is clear that (a) 
the text of these talks is not being distributed and (b) all concerned prefer that the printed sources be cited, 
both because they are publicly available and because they better reflect the original sequence of research 
thinking and results. 
iii It is natural to ask whether the path can actually reach the boundary between the rank-2 and rank-3 
regions. Practical experience suggests that it cannot, since if it could it should happen at least occasionally 
in practice. Thus practical experience is consistent with the mathematical framework. 
iv There is a typo in the first line of the corollary; it should read  , not R S> R S≥ . The latter would 
obviously give perfect fit.  
vThe  models are very simple;  a single parameter controls the weighting of “generating vectors” for each 
pair of factors in each mode. By gradually increasing the value of this parameter, one can see the full 
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picture of degenerative change, including (i) a coordinated increase in factor loading correlations, which, 
being negative, produce (ii) overall cancellation of most of the factor contributions, but (iii) this is 
counterbalanced by increasing magnitudes of individual factor loadings, which (iv) diverge toward infinity 
as the parameter approaches a specific value, while (v) all of these loading changes are balanced in such a 
way that they  continually improve the fit of the two-factor  approximation to the rank-3 target array. Thus, 
the  elementary algebraic relations in the model reveal the mathematical structure of the process of 
degeneration it describe. It would seem to me ([r.a.h.]) that the degeneracy parameter is interpretable as the 
solution’s position along a path moving toward the boundary between the rank-2 and rank-3 regions of the 
8 dimensional array space described in [5]. I believe that by appropriately relabeling and reinterpreting the 
“generating vectors” and reexpressing their weightings,  at least some of Paatero’s “models” can be turned 
into literal descriptions of the degeneracy phenomenon in particular datasets in terms of the actual factors 
underlying those datasets.  
vi This is done by locating the analysis starting point and the target “data” array so that the top of the 
parabolically shaped boundary between rank-2 and rank-3 regions in the array space is a partial obstacle, 
forcing the sequence of improving approximations to pass close to it. 
vii The rate of progress through the space (i.e., relative distance between successive approximations) slows 
down dramatically when the path goes close to the rank-3 region, then slowly moves around the obstacle; it 
speeds up again as it moves away from the boundary region and goes directly toward the target. 
viiiEditor’s note: Zijlstra and Kiers’ use of cosines to measure proportionality has advantages, but is also 
vulnerable to a confound when there are large shared baselines. Some others use both a product of cosines  
and a product of correlations to assess profile similarity. 
ixWe thank Lim (p.c., 2005) for noting that this polynomial is also found in the literature on 
hyperdeterminants, cf. I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, "Discriminants,  Resultants, and 
Multidimensional Determinants," Birkhauser, 1994, p. 448. 
 


